

Inborn errors of metabolism presenting with kidney stones: clinical aspects

Francesco Emma

Division of Nephrology and Dialysis Bambino Gesù Children's Hospital, IRCCS Rome, Italy

September 6, 2016 – Palazzo dei Congressi, Rome

Pediatric renal stones in the western hemisphere

(*) ~65% major component and ~35% principal component

Cross-sectional / prospective data from the Gubbio study

Cirillo et al, Kidney Int 63:2200-2206 (2003)

UNa vs Uca

CHILDREN

ADULTS

Hereditary diseases causing calcium-based nephrolithiasis and/or nephrocalcinosis

Figure 3 | Claudins are transmembrane proteins and important components of the tight junctions where they are connected with ZO-1 protein and actin of the cytoskeleton to regulate the paracellular permeability to water and ions and preserve cell polarity. Claudin 16 (CLDN16) is detected in cells of the ascending limb. Its variants may change tight junction permeability and paracellular reabsorption of divalent cations driven by the electric gradient maintained by potassiumchannel (ROMK) and sodium-chloride cotransport (NCCT). The calcium-sensing receptor (CASR) inhibits the expression of claudin 16 in tight junctions and the activity of NCCT, thus decreasing the paracellular reabsorption of calcium and magnesium. Claudin 14 is located in cells of the distal convoluted tubule and its role is as yet unclear.

Figure 1 | When the concentration of calcium increases in the tubular fluid, two counterbalancing mechanisms are activated by the calcium-sensing receptor (CASR) in the distal tubule. Here, CASR stimulates proton excretion by H-pump in intercalated cells and decreases water reabsorption by the reduction of aquaporin 2 (AQP2) expression on the apical membrane. As a consequence, urine dilution and acidification protect against calcium-phosphate salt precipitation within the tubular lumen. It is noteworthy that CASR is not a regulator of urine pH or osmolality, but may have a local effect on tubular handling of protons and water. ADP, adenosine diphosphate; ATP, adenosine triphosphate.

Hereditary diseases causing calcium-based nephrolithiasis and/or nephrocalcinosis

	Gene	Locus/ inheritance mode	Protein	Cellular defect	Tubular defect	Disorder	Ref.
	CLCN5	Xp11.22 X-linked recessive	Chloride channel 5 on the endosome membrane	Impaired acidification of the endosome fluid in proximal tubular cells.	Multiple reabsorption defects in the proximal tubule. Stones, nephrocalcinosis and possible end-stage renal failure.	Dent's syndrome	Cho <i>et al.⁶</i> and Scheinman <i>et al.⁷</i>
Dent	OCRL1	Xq26.1 X-linked recessive	Phosphatidylinositol 4,5-bisphosphate 5-phosphatase	Accumulation of phosphatidylinositol 4,5- bisphosphate in proximal cells, followed by actin polymerization, and tight and aderens junction defects.	Multiple reabsorption defects in the proximal tubule. Stones, nephrocalcinosis and possible end- stage renal failure. Hydrophthalmia, cataract, mental retardation.	Dent's syndrome 2 Lowe syndrome	Cho <i>et al.</i> ⁶
.	CLDN16	3q27 Autosomal dominant	Claudin 16	Alteration of tight junction ion selectivity in the thick ascending limb of Henle loop.	Urinary loss of magnesium and calcium, nephrocalcinosis, and progressive kidney failure in homozygotes. Heterozygotes may produce kidney stones.	Familial hypomagnesemia with hypercalciuria and nephrocalcinosis	Muller <i>et al.</i> ®
Claudin mutations	CLDN19	1p34.2 Autosomal dominant	Claudin 19	Alteration of tight junction ion selectivity in the thick ascending limb of Henle loop.	Renal wasting of magnesium and calcium, nephrocalcinosis and progressive kidney failure in homozygotes. Macular colobomata, myopia, and nystagmus.	Familial hypomagnesemia with hypercalciuria and nephrocalcinosis with ocular impairment	Konrad <i>et al.</i> 9
	ATP6N1B	7q33-q34 Autosomal recessive	β -Subunit ATP6N1B of the H-pump	Defect of the proton secretion and urine acidification in the α-intercalated cells of the collecting duct.	Hypokalemic hyperchloremic acidosis with nephrocalcinosis and kidney stones.	Distal tubular acidosis	Smith <i>et al.</i> ¹⁰
RTA	ATP6B1	2cen-q13 Autosomal recessive	Subunit ATP6B1 of the H-pump	Defect of the proton secretion and urine acidification in the α -intercalated cells of the collecting duct.	Hypokalemic hyperchloremic acidosis with nephrocalcinosis and kidney stones. Neural deafness.	Distal tubular acidosis with progressive neural deafness	Karet <i>et al.</i> 11
	SLC4A1	17q21-q22 Autosomal dominant	Anion exchanger	Decreased bicarbonate reabsorption at the basolateral membrane of the α -intercalated cells of the collecting duct.	Hypokalemic hyperchloremic acidosis, nephrocalcinosis and kidney stones. Kidney stones and incomplete tubular acidosis in heterozvootes.	Distal tubular acidosis	Bruce et al. ¹²
lyperphosphaturia	SLC34A3	9q34 Autosomal recessive	NPT2c sodium- phosphate cotransporter	Reduced phosphate reabsorption and increased calcitriol synthesis in the proximal tubular cells.	Severe rickets and kidney stones caused by renal loss of phosphate, hypophosphatemia, and hypercalciuria.	Hypophosphatemic rickets with hypercalciuria	Bergwitz <i>et al.</i> ¹³ and Tencza <i>et al.</i> ¹⁴
	CASR	3q13.3-q21 Autosomal dominant	Calcium-sensing receptor (activating mutations)	Inhibition of calcium reabsorption in the ascending limb of Henle loop.	Hypercalciuria and hypocalcemia. Hyperphosphatemia and hypophosphaturia. Renal hypopotassemia if very potent effect of the mutation.	Autosomal-dominant hypoparathyroidism Bartter syndrome type 5	Pearce et al. ¹⁵
Bartter	SLC12A1	15q15-q21.1 Autosomal recessive	NKCC2 sodium- potassium-chloride transporter	Decreased sodium, potassium and chloride reabsorption in the ascending limb of Henle loop.	Renal hypokalemia, alkalosis, hypercalciuria, secondary aldosteronism and nephrocalcinosis.	Bartter syndrome type 1	Puricelli et al. ¹⁶
	KCNJ1	11q24 Autosomal recessive	ROMK1 potassium channel	Decreased sodium, potassium and chloride reabsorption in the ascending limb of Henle loop.	Renal hypokalemia, alkalosis, hypercalciuria, secondary aldosteronism and nephrocalcinosis.	Bartter syndrome type 2	Puricelli et al. ¹⁶

Gene mutations cause phenotypic alterations at protein, cellular, and body level that are described in the table. All these mutations cause a protein loss-of-function with the exception of CASR gene mutations that cause nephrolithiasis in the presence of activating mutations.

Vezzoli et al, Kidney International (2011) 80, 587–593

Underlying diseases causing renal stones

Structure	Disease
PO ₄ -NH ₃ -Mg (struvite)	UTI
Calcium phosphate	Uuroreoloiurio
Calcium oxalate, dihydrated	нурегсающина
Calcium oxalate, monohydrated	Hyperoxaluria
Cystine	Cystinuria
Uric acid	Purine synthesis disorder
2,8-dihydroxyadenine	APRT deficiency
Xanthine	Xanthinuria

Cystinuria

Historical classification	Туре І	Type II	Type III
Aminoaciduria heterozygous	N	$\uparrow\uparrow$	†
Plasma cystine after oral load	ተተ	$\uparrow\uparrow$	N
Chromosome	2	19	19
Gene	SLC3A1	SLC7A9	SLC7A9
Protein	rBAT	B ^{0,+} AT	B ^{0,+} AT
Gene-based classification	Туре А	Туре В	

Wagner et al. Am J Physiol Cell Physiol 2001;281:C1077-C1093

Cystinuria

Gender effect

Heterozygous carriers

type A

p <0.001

type B

Dello Strologo, JASN 2002

Glyoxylate metabolism in the hepatocyte

Courtesy Pierre Cochat

Genotype-phenotype correlations

PH1 diagnosis

Infantile form	35%
Recurrent stones with progressive CKD	20%
Late onset during adulthood	15%
Pedigree screening	15%
Diagnosis after recurrence on a kidney transplant	10%

Oxalate mass balance

Oxalate mass balance

Oxalate nephropathy

- Conditions that promote renal calcium oxalate crystals precipitation:
 - low tubular flow rate (low GFR)
 - high oxalate concentration in the tubular lumen
 - pre-existing tubular damage

(early hours after renal transplantation are at very high risk of precipitation !!!)

 Once calcium oxalate crystals precipitate, they cause chronic interstitial inflammation and irreversible damage.

Oxalate mass balance

Oxalate mass balance

PH1 disease progression

Adapted from Cochat et al, Pediatric Nephrology 7th edition, 2015

Conservative management

- High fluid intake (> 3000 ml/m²/24h)
- Potassium citrate
- Try pyridoxine
 - 5-20 mg/Kg/d
 - G170R and P152L mutations
 - goal: Uox reduction >30%
- Orthophosphate (?)
- Hydrochlorothiazide (?)
- Low oxalate diet has limited benefit (>90% of plasma oxalate is secondary to the liver overproduction)

Early diagnosis is essential

Two sisters with PH1 (AGT Gly170Arg mutation)

• Lucia

diagnosed at 2.5 years with creatinine 1.4 mg/dl now, aged 13, creatinine 2.7 mg/dl

• Giulia

diagnosed at birth medical treatment started immediately NGT for 6 months to guarantee large fluid intake now, age 8, creatinine 0.47 mg/dl

Compliance is essential

Primary hyperoxaluria: ESPN/ERA-EDTA Registry

Oxalate accumulation on dialysis

Oxalate generation : 4-7 mmol/1.73 m²/24h

Removal by conventional dialysis : 1-2 mmol/1.73 m²/24h

Maximizing dialysis

Intensive dialysis can limit oxalate deposition

Migration of a single translucent band

6 months

12 months

16 months

18 months

Patient age, body weight HD setting, blood flow	Plasma Oxalate, µmol/l	Mass Removal, µmol	Generation Rate, µmol/l/h	Distribution Volume, L (% of BW)	Tissue Deposition, μmol/24h/kg	Oxalate clearance, I/week/1.73 m ²
6 months, 5.0 kg daily CVVHD, Qb 40 ml/min	PreHD: 205 PostHD: 31	644	10.0	2.84 (56.8)	5	228
8 months, 6.5 kg daily CVVHD, Qb 50 ml/min	PreHD: 178 PostHD: 41	615	9.14	3.68 (56.7)	19	167
30 months, 12.3 kg HDx6/week, Qb 110 ml/min	PreHD: 102 PostHD: 28	812	4.81	8.28 (67%)	12	185

Primary hyperoxaluria: ESPN/ERA-EDTA Registry

Prolonged dialysis causes extensive oxalate depositions

Oxalate accumulation after 3 years of PD

Oxalate levels after isolated liver Tx

Pre-emptive liver transplantation

Pre-emptive liver transplantation for PH-I arrests renal function deterioration

Fig. 1. Renal function of patients in both groups at the time of isolated liver transplant and at regular intervals post-transplant.

Transplant strategy

Tx strategy	Simultaneous liver + kidney	Sequential liver-kidney	Isolated kidney	Isolated liver
CKD Stage 3b (30 < GFR < 45)				Expert opinion
CKD Stage 4 (15 < GFR < 29)	++		Gly170Arg? Phe152lle?	
CKD Stage 5 (GFR < 15)		+++	Gly170Arg? Phe152lle?	
Infantile form (ESRD < 2 years)		+++		
HD strategy	During and after Tx according to POx and GFR	Standard HD following liver Tx aiming at POx < 20 µmol/L	During and after Tx	Sometimes during Tx

Thank you!

